
IJARCCE 
 ISSN (Online) 2278-1021 

   ISSN (Print) 2319-5940 

 

          International Journal of Advanced Research in Computer and Communication Engineering 
ISO 3297:2007 Certified 

Vol. 7, Issue 1, January 2018 

 

Copyright to IJARCCE                                              DOI  10.17148/IJARCCE.2018.7111                                                    78 

An Anatomy of Windows Executable File (EXE) 

and Linux Executable and Linkable Format File 

(ELF) Formats for Digital Forensic Analysis and 

Anti-Virus Design Purposes 
 

Mohammed A. Saleh 

Computer Science Department, College of Sciences and Arts in Ar Rass, Qassim University, Kingdom of Saudi Arabia 

 

 

Abstract: The era of forensic analysis and anti-virus design requires a clear anatomy of Windows Executable File 

(EXE) and Linux Executable Linkable Format File (ELF) Formats, especially for beginners to these fields; thus, this 

research comes out. First, this research identifies data structures for both files formats, namely EXE and ELF files 

formats. After that, it classifies them according to headers, sections, and resources based on specific features and 

functionalities. Finally, this research proposes analysis guidelines for EXE and ELF files formats forensic analysis and 

anti-virus design purposes. 

 

Keywords: Anatomy of EXE format file, anatomy of ELF format file, anti-virus design, digital forensic analysis.  

 

I. INTRODUCTION 

Windows Executable File (EXE) and Linux Executable and Linkable Format File (ELF) files formats dominate 

executable files in computer era. Windows Executable File (EXE) in an executable file for Windows operating system, 

while Linux Executable and Linkable Format File (ELF) is an executable file for Unix-Like operating systems, such as 

Linux and BSD. Since Windows and Linux operating systems are the most widely used operating systems on the globe, 

EXE and ELF are commonly spread, too [1][2].  

However, digital forensic analyst and anti-virus designer seek to be familiar with EXE and ELF file formats in order to 

analyse them properly, and adopt their solutions accordingly. Digital forensic analyst needs to identify file format and 

architecture, and then investigate it. After that, in case the malicious executable file is detected, an anti-virus needs to 

update its database, so it be able to detect it later on. The following sections analyse and discuss an anatomy of 

Windows Executable File (EXE) and Linux Executable and Linkable Format File (ELF) formats for digital forensic 

analysis and anti-virus design purposes in granular details [2][3][4][5][6].  

 

II. LITERATURE REVIEW 

 

In reality, Windows Executable File (EXE), and Linux Executable and Linkable Format File (ELF) structures have 

many identical features and functionalities, and on the other hand, they have not. Both of EXE and ELF format’s files 

are formed and constructed throughout data structures. In general, ELF format’s file comprises of three main successive 

structures, namely Elfxx_Ehdr structure, Elfxx_Phdr structure, and Elfxx_Shdr structure, where xx is 32 for 32-bits 

structure, or 64 for 64-bits structure. On the other hand, EXE format’s file encompasses of five main consecutive 

structures, such as IMAGE_DOS_HEADER structure, IMAGE_NT_HEADERS structure, IMAGE_FILE_HEADER 

structure, IMAGE_OPTIONAL_HEADER structure, and IMAGE_SECTION_HEADER structure. In addition, 

IMAGE_OPTIONAL_HEADER structure contains sub structure called DataDirectory used to include further sub 

structures like IMAGE_EXPORT_DIRECTORY structure, IMAGE_IMPORT_DESCRIPTOR structure, and 

IMAGE_RESOURCE_DATA_ENTRY structure. The following Table 1 summarizes structures of EXE and ELF 

format’s files [7][8][4][9][10][11][12][13][14]. 

 

 

 

 

 



IJARCCE 
 ISSN (Online) 2278-1021 

   ISSN (Print) 2319-5940 

 

          International Journal of Advanced Research in Computer and Communication Engineering 
ISO 3297:2007 Certified 

Vol. 7, Issue 1, January 2018 

 

Copyright to IJARCCE                                              DOI  10.17148/IJARCCE.2018.7111                                                    79 

TABLE 1: A Summary of Windows Executable File (EXE) Data Structures, and Linux  

Executable and Linkable Format File (ELF) Data Structures 

ELF File Format EXE File Format 

 Elf32_Ehdr Struct: 

e_ident (0x7f ELF) 

e_type (reloc, exe, …) 

e_machine (Arch.) 

e_entry (virtAddr of .text) 

e_phoff (ph table’s offset) 

e_shoff (sh table’s offset) 

e_ehsize 

e_phentsize 

e_phnum 

e_shentsize 

e_shnum 

 Elf32_Phdr Struct: 

p_type (LOAD, DYNAMIC, INTERP) 

p_offset (beginning of file) 

p_vaddr 

p_paddr 

p_filesz 

p_memsz 

p_flags (X, W, R) 

p_align 

 Elf32_Shdr Struct: 

sh_name (.data, .text, .bss) 

sh_type (PROGBITS, SYMTAB, NOBITS, REL) 

sh_flags (Data_w, Code_X) 

sh_addr 

sh_size 

sh_offset (beginning of file) 

sh_addralign 

sh_entsize 

 IMAGE_DOS_HEADER Struct: 

e_magic (MZ) 

e_ss 

e_sp 

e_ip 

e_cs 

e_lfanew (PE file header Offset) 

MS-DOS 2.0 Stub Program 

 IMAGE_NT_HEADERS Struct: 

Signature (PE00) 

FileHeader 

OptionalHeader 

 IMAGE_FILE_HEADER Struct: 

Machine (Arch.) 

NumberOfSections 

TimeDateStamp 

SizeOfOptionalHeader 

acteristics (exe, dll, system files, ...) 

 IMAGE_OPTIONAL_HEADER Struct: 

Magic (0x10b=PE32, 0x20b=PE32+) 

SizeOfCode (Size of executable code) 

SizeOfInitializedData (Size of Initialized Data) 

SizeOfUninitializedData (Size of Uninitialized Data) 

AddressOfEntryPoint (virtAddr of .text) 

BaseOfCode (Relative offset of code) 

BaseOfData (Relative offset of Data) 

ImageBase 

SectionAlignment 

FileAlignment 

SizeOfImage 

SizeOfHeaders 

NumberOfRvaAndSizes 

DataDirectory[NumberOfRvaAndSizes] 

 IMAGE_SECTION_HEADER Struct: 

Name 

VirtualAddress 

SizeOfRawData 

PointerToRawData 

acteristics (Code, Initialized data, Uninitialized data, 

Resource, +X, +W, +R, …) 

7. DataDirectory[NumberOfRvaAndSizes] 

• IMAGE_EXPORT_DIRECTORY Struct: 

  Name 

  Base 

  NumberOfFunctions 

  NumberOfNames 

  AddressOfFunctions 

  AddressOfNames 

  AddressOfNameOrdinals 

• IMAGE_IMPORT_DESCRIPTOR Struct: 



IJARCCE 
 ISSN (Online) 2278-1021 

   ISSN (Print) 2319-5940 

 

          International Journal of Advanced Research in Computer and Communication Engineering 
ISO 3297:2007 Certified 

Vol. 7, Issue 1, January 2018 

 

Copyright to IJARCCE                                              DOI  10.17148/IJARCCE.2018.7111                                                    80 

  OriginalFirstThunk 

  TimeDateStamp 

  ForwarderChain 

  Name 

  FirstThunk 

• IMAGE_IMPORT_BY_NAME Struct: 

  Hint 

  Name[1] 

• IMAGE_RESOURCE_DIRECTORY  Struct: 

  NumberOfNamedEntries 

  NumberOfIdEntries 

• IMAGE_RESOURCE_DIRECTORY_ENTR

Y Struct: 

  NameId 

  Data 

• IMAGE_RESOURCE_DATA_ENTRY 

Struct: 

  Data 

  Size 

  CodePage 

  Reserved 

 
 

III.  CLASSIFYING WINDOWS EXECUTABLE FILE (EXE) AND LINUX EXECUTABLE AND LINKABLE FORMAT FILE 

(ELF) DATA STRUCTURES 

 

The following Table 2 presents a classification of identical headers for Windows Executable File (EXE) and Linux 

Executable and Linkable Format File (ELF) data structures based on a feature/functionality. It shows a 

Feature/Functionality in the first column, ELF Format File in the second column, and EXE Format File in the third 

column. These data structures are used to identify file format, type, and architecture. In addition, they are used to 

calculate offsets to sections, determine program entry point, and set sections permissions 

[4][7][8][4][9][10][11][12][13][14].  
 

TABLE 2: A Classification of Identical headers for Windows Executable File (EXE) and Linux Executable and 

Linkable Format File (ELF) Data Structures based on a Feature/Functionality 

Feature/Functionality ELF Format File  EXE Format File  

Magic Value  Elf32_Ehdr 

Struct: 

o e_ident (0x7f 

ELF) 

 IMAGE_DOS_HEADER Struct: 

o e_magic (MZ) 

Next Structs Offset   Elf32_Ehdr 

Struct: 

o e_phoff 

o e_shoff 

 

 IMAGE_DOS_HEADER Struct: 

o e_lfanew (Offset to PE) 

 IMAGE_NT_HEADERS Struct: 

o Signature (PE00) 

o FileHeader 

o OptionalHeader 

Machine Architecture  Elf32_Ehdr 

Struct: 

o e_machine 

 IMAGE_FILE_HEADER Struct: 

o Machine 

File Type  Elf32_Ehdr 

Struct: 

 IMAGE_FILE_HEADER Struct: 

o acteristics (exe, dll, system files, ...) 



IJARCCE 
 ISSN (Online) 2278-1021 

   ISSN (Print) 2319-5940 

 

          International Journal of Advanced Research in Computer and Communication Engineering 
ISO 3297:2007 Certified 

Vol. 7, Issue 1, January 2018 

 

Copyright to IJARCCE                                              DOI  10.17148/IJARCCE.2018.7111                                                    81 

o e_type (reloc, exe, 

…) 

Program Entry Point  Elf32_Ehdr 

Struct: 

o e_entry (.text) 

 IMAGE_OPTIONAL_HEADER 

Struct: 

o AddressOfEntryPoint (.text) 

Program Sections Number  Elf32_Ehdr 

Struct: 

o e_shnum 

 IMAGE_FILE_HEADER Struct: 

o NumberOfSections 

Permissions  Elf32_Phdr 

Struct: 

o p_flags (X, W, R) 

 Elf32_Shdr 

Struct: 

o sh_flags (Data_w, 

Code_X) 

 IMAGE_SECTION_HEADER 

Struct: 

o acteristics (Code, Initialized data, 

Uninitialized data, Resource, +X, +W, +R, …) 

 
As well, Table 3 below presents a classification of identical sections for Windows Executable File (EXE) and Linux 

Executable and Linkable Format File (ELF) data structures based on a feature/functionality. The purposes of these data 

structures are used to locate and load text section, namely .text section, and execute it accordingly, which represents 

executable instructions. Besides that, they locate and load an initialized and uninitialized sections, such as .data, .rodata, 

.pdata, and .bss sections that are used for storing global and local variables, strings names, and constants. In addition, 

they locate and load a resource section, namely .rsrc that is used only for Windows Executable File (EXE). Table 4 

below provides granular details of .rsrc section [4][7][8][4][9][10][11][12][13][14].  

 
TABLE 3: A Classification of Identical Sections for Windows Executable File (EXE) and Linux Executable and 

Linkable Format File (ELF) Data Structures based on a Feature/Functionality 

Feature/Functionality ELF Format File  EXE Format File  

Text Section 

(.text) 

 Elf32_Shdr 

Struct: 

o sh_name (.text) 

o sh_type 

(PROGBITS, REL) 

o sh_flags 

(Code_X) 

o sh_addr 

o sh_size 

o sh_offset 

(beginning of file) 

 IMAGE_OPTIONAL_HEADER 

Struct: 

o SizeOfCode (Size of executable code) 

o BaseOfCode (Relative offset of code) 

 

 IMAGE_SECTION_HEADER 

Struct: 

o Name 

o VirtualAddress 

o SizeOfRawData 

o PointerToRawData 

o acteristics (Code, +X, +W, +R, …) 

Initialized Data  

Section  

(.data, .rodata, .pdata, idata, 

edata) 

 Elf32_Shdr 

Struct: 

o sh_name (.data) 

o sh_type 

(PROGBITS) 

o sh_flags (Data_w) 

o sh_addr 

o sh_size 

o sh_offset 

(beginning of file) 

 IMAGE_OPTIONAL_HEADER 

Struct: 

o SizeOfInitializedData (Size of Initialized 

Data) 

o BaseOfData (Relative offset of Data) 

 

 IMAGE_SECTION_HEADER 

Struct: 

o Name 

o VirtualAddress 

o SizeOfRawData 

o PointerToRawData 



IJARCCE 
 ISSN (Online) 2278-1021 

   ISSN (Print) 2319-5940 

 

          International Journal of Advanced Research in Computer and Communication Engineering 
ISO 3297:2007 Certified 

Vol. 7, Issue 1, January 2018 

 

Copyright to IJARCCE                                              DOI  10.17148/IJARCCE.2018.7111                                                    82 

o acteristics (Initialized data, +X, +W, +R, 

…) 

Uninitialized Data Section  

(.bss) 

 Elf32_Shdr 

Struct: 

o sh_name (.bss) 

o sh_type 

(PROGBITS) 

o sh_flags (Data_w) 

o sh_addr 

o sh_size 

o sh_offset 

(beginning of file) 

 IMAGE_OPTIONAL_HEADER 

Struct: 

o SizeOfUninitializedData (Size of 

Uninitialized Data) 

 

 IMAGE_SECTION_HEADER 

Struct: 

o Name 

o VirtualAddress 

o SizeOfRawData 

o PointerToRawData 

o acteristics (Uninitialized data, Resource, 

+X, +W, +R, …) 

Resource Section 

(.rsrc) 

 N/A  IMAGE_OPTIONAL_HEADER 

Struct: 

o NumberOfRvaAndSize 

o DataDirectory[NumberOfRvaAndSizes] 

 

 IMAGE_SECTION_HEADER 

Struct: 

o Name 

o VirtualAddress 

o SizeOfRawData 

o PointerToRawData 

o acteristics (Resource, +X, +W, +R, …) 

Section Packer, Encryptor, and 

Protector 

 Manipulate 

sections, and change 

program entry point.  

 Manipulate sections, and change 

program entry point. 

 

 
Finally, Table 4 below details a classification of a resource section for Windows Executable File (EXE) and Linux 

Executable and Linkable Format File (ELF) data structures based on a feature/functionality. The data structures identify 

a resource type whether is imported functions, exported functions, or merely a resource like buttons, menus, etc. After 

that, these sections are loaded accordingly [4][7][8][4][9][10][11][12][13][14].  

 
TABLE 4: A Classification of Resource Section for Windows Executable File (EXE) and Linux Executable and 

Linkable Format File (ELF) Data Structure based on a Feature/Functionality 

Feature/Functionality ELF Format File  EXE Format File  

Resource Section 

(.rsrc) 

 N/A  IMAGE_OPTIONAL_HEADER Struct: 

o DataDirectory[NumberOfRvaAndSizes] 

 

 IMAGE_EXPORT_DIRECTORY Struct: 

o Name 

o Base 

o NumberOfFunctions 

o NumberOfNames 

o AddressOfFunctions 

o AddressOfNames 

o AddressOfNameOrdinals 

 



IJARCCE 
 ISSN (Online) 2278-1021 

   ISSN (Print) 2319-5940 

 

          International Journal of Advanced Research in Computer and Communication Engineering 
ISO 3297:2007 Certified 

Vol. 7, Issue 1, January 2018 

 

Copyright to IJARCCE                                              DOI  10.17148/IJARCCE.2018.7111                                                    83 

 IMAGE_IMPORT_DESCRIPTOR 

Struct: 

o OriginalFirstThunk 

o TimeDateStamp 

o ForwarderChain 

o Name 

o FirstThunk 

 

 IMAGE_IMPORT_BY_NAME Struct: 

o Hint 

o Name[1] 

 

 IMAGE_RESOURCE_DIRECTORY  

Struct: 

o NumberOfNamedEntries 

o NumberOfIdEntries 

 

 IMAGE_RESOURCE_DIRECTORY_EN

TRY Struct: 

o NameId 

o Data 

 

 IMAGE_RESOURCE_DATA_ENTRY 

Struct: 

o Data 

o Size 

o CodePage 

o Reserved 

 

IV. MALWARE ANALYSIS GUIDELINES FOR WINDOWS EXECUTABLE FILE (EXE) AND LINUX EXECUTABLE AND 

LINKABLE FORMAT FILE (ELF) FORMATS FORENSIC ANALYSIS AND ANTI-VIRUS DESIGN PURPOSES 

 

1. Firstly, inspect headers values of EXE and ELF formats file, as explained in Table 2 above, in order to determine 

the right structures values. However, some malware authors obfuscate the written malware by appending or padding 

various bytes in begin, specific locations, or end of malware sample in order to prevent malware analysis and make it 

harder to the experts. Hence, a further deeper inspection is required to carve the correct structure values from malware 

sample.  

2. After that, inspect existence of sections header values as depicted in Table 3 above. Here there are two dissimilar 

options:  

i. The sections names are identical to names shown in Table 3 above, then follow step 3 below. 

ii. The sections names are different from names shown Table 3 above, and then follow step 4 below. 

3. Investigate and analyze .text section, which has the executable instructions, using static and dynamic analysis. 

Additionally, analyze .data, .rodata, .pdata, idata, edata, and other data sections, which hold variables’ names and 

values, strings’ names and values, constants’ names and values, imported functions, and exported functions. Indeed, 

this step leads to explain malwares harms and negative impacts.  

4. In this case, the default sections’ names of a malware sample are changed by malware authors themselves to 

obfuscate the analysis and make it harder for the experts. They accomplish this mission by using a Packer, an 

Encryptor, or a Protector to change the original value of Program Entry Point to a new one. During program 

execution, it returns the original sections names and executes them accordingly. Therefore, the malware sample needs 

to be decrypted or unpacked first, and then follow step iii above. 

5. Afterwards, inspect and investigate any extra sections names other than whose mentioned above, which created and 

adopted by some malware authors, by following step iii above.  

6. Then, inspect and investigate .rsrc section of exe format file, which hold an important data to malware sample. 

Usually, malware authors hide harmful instructions inside this section.  



IJARCCE 
 ISSN (Online) 2278-1021 

   ISSN (Print) 2319-5940 

 

          International Journal of Advanced Research in Computer and Communication Engineering 
ISO 3297:2007 Certified 

Vol. 7, Issue 1, January 2018 

 

Copyright to IJARCCE                                              DOI  10.17148/IJARCCE.2018.7111                                                    84 

7. Finally, a forensic analyst writes down a detailed forensic analysis based on a malware sample investigation, 

especially headers data structures, executable instructions and data sections, and packing and encrypting of sections 

data structures. As well, an anti-virus designer computes digest hash values, such as sha256 hash function, for a 

malware sample and it’s all sections to update its anti-virus database, hence an anti-virus detects a malware sample later 

on.  

V. CONCLUSION 
 

Digital forensic analysis and an anti-virus design are important services and tools in computer era, which need a deep 

understanding of the most common executable files, namely Windows Executable File (EXE) and Linux Executable 

Linkable Format File (ELF) files formats. Thus, this research studied, analysed, and discussed an anatomy of Windows 

Executable File (EXE) and Linux Executable and Linkable Format File (ELF) formats for digital forensic analysis and 

anti-virus design purposes. As well, it proposed analysis guidelines for EXE and ELF files formats forensic analysis 

and anti-virus design purposes. The proposed guidelines demonstrate sequential steps to be followed by digital forensic 

analyst and an anti-virus designer in order to analyse and classify any executable files whether is a malicious or benign 

file. Overall, these guidelines involve identify data structures for both files formats, and then classify them according to 

headers, sections, and resources based on specific features and functionalities. Finally, a forensic analyst writes down a 

detailed forensic analysis, and an anti-virus designer computes digest hash values and update its anti-virus database, 

therefore it detects a malware sample later on. In future work, we plan to deign detectable methods based on different 

approaches for detecting malicious EXE and ELF executable files.  

REFERENCES 

[1] L. Wu, “Automatic Detection Model of Malware Signature for Anti-virus Cloud Computing,” 10th IEEE/ACIS Int. Conf. Comput. Inf. Sci. 

Autom., pp. 1–3, 2011. 
[2] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis, “Spotless Sandboxes : Evading Malware Analysis Systems using Wear-

and-Tear Artifacts,” IEEE Symp. Secur. Priv. Spotless, pp. 1009–1024, 2017. 

[3] C. A. Martínez and G. I. Echeverri, “Malware Detection based on Cloud Computing integrating Intrusion Ontology representation.” 
[4] M. U. AbdelHameed, M. A. Sobh, and A. M. B. Eldin, “Portable executable automatic protection using dynamic infection and code 

redirection,” in 2009 International Conference on Computer Engineering Systems, 2009, pp. 501–507. 

[5] A. Jadhav, D. Vidyarthi, and H. M., “Evolution of Evasive Malwares : A Survey,” Int. Conf. Comput. Tech. Inf. Commun. Technol. Evol., 2016. 
[6] A. Agrawal and K. Wahie, “Analyzing and Optimizing cloud-based antivirus paradigm,” Int. Conf. Comput. Tech. Inf. Commun. Technol. 

Evol., no. Iciccs, pp. 203–207, 2016. 

[7] D. Ai, G. Zeng, Y. Yue, and B. Shen, “Research of SoftMan Migration Based on Linux Checkpoint,” in 2009 Fifth International Conference on 
Natural Computation, 2009, vol. 3, pp. 97–100. 

[8] S. Torri, W. Britt, and J. A. Hamilton, “A compiler classification framework for use in reverse engineering,” in 2009 IEEE Symposium on 

Computational Intelligence in Cyber Security, 2009, pp. 159–166. 
[9] L. Lu, L. Qiuju, and X. Tingrong, “Research and Implementation of Compression Shell Unpacking Technology for PE File,” in 2009 

International Forum on Information Technology and Applications, 2009, vol. 1, pp. 438–442. 

[10] E. H. Hwang, S. J. Cho, K. J. Kim, Y. J. Kim, S. H. Yoon, and J. W. Jeon, “A recovery algorithm for PE files in a multi-core system,” in 2012 
12th International Conference on Control, Automation and Systems, 2012, pp. 289–293. 

[11] R. Mosli, R. Li, B. Yuan, and Y. Pan, “Automated malware detection using artifacts in forensic memory images,” in 2016 IEEE Symposium on 

Technologies for Homeland Security (HST), 2016, pp. 1–6. 
[12] A. K. Marnerides, M. R. Watson, N. Shirazi, A. Mauthe, and D. Hutchison, “Malware Analysis in Cloud Computing : Network and System 

Characteristics,” Globecom 2013 Work. - Cloud Comput. Syst. Networks, Appl. Malware, pp. 482–487, 2013. 

[13] Linux Programmer’s Manual, “elf - format of Executable and Linking Format (ELF) files.” [Online]. Available: http://man7.org/linux/man-
pages/man5/elf.5.html. [Accessed: 20-Jan-2018]. 

[14] Microsoft MSDN, “PE Format.” [Online]. Available: https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx. 

[Accessed: 20-Jan-2018]. 

 


